上帝掷骰子吗

《上帝掷骰子吗》这本书是关于量子论的故事。量子论是一个极为奇妙的理论:从物理角度来说,它在科学家中间引起了最为激烈的争议和关注;从现实角度来说,它给我们的社会带来了无与伦 …… [ 展开全部 ]
  • 作者:曹天元
  • 出版社:辽宁教育出版社
  • 定价:35.00元
  • ISBN:7538281770
第五章 曙光
  • dzter
    2015-12-08 19:50:18 摘录自131页
    不过有一个例外,就是泡利,他一直对自旋深恶痛绝。在他看来,原本电子已经在数学当中被表达得很充分了——现在可好,什么形状、轨道、大小、旋转……种种经验性的概念又幽灵般地回来了。原子系统比任何时候都像个太阳系,本来只有公转,现在连自转都有了。他始终按照自己的路子走,绝不向任何力学模型低头。事实上,在某种意义上泡利是对的,电子的自旋并不能想象成传统行星的那种自转,它具有1/2的量子数,也就是说,它要转两圈才露出同一个面孔,这里面的意义只能由数学来把握。后来泡利真的从特定的矩阵出发,推出了这一性质,而一切又被伟大的狄拉克于1928年统统包含于他那相对论化了的量子体系中,成为电子内禀的自然属性。
    这条书摘已被收藏0
  • dzter
    2015-12-08 19:50:18 摘录自129页
    狄拉克把论文寄给海森堡,海森堡热情地赞扬了他的成就,不过带给狄拉克一个糟糕的消息:他的结果已经在德国由波恩和约尔当做出了,是通过矩阵的方式得到的。想来狄拉克一定为此感到很郁闷,因为显然他的法子更简洁明晰。随后狄拉克又出色地证明了新力学和氢分子实验数据的吻合,他又一次郁闷了——泡利比他快了一点点,五天而已。哥廷根的这帮家伙,海森堡、波恩、约尔当、泡利,他们是大军团联合作战,而狄拉克在剑桥则是孤军奋斗,因为在英国懂得量子力学的人简直屈指可数。但是,虽然狄拉克慢了那么一点,但每一次他的理论都显得更为简洁、优美、深刻。而且,上天很快会给他新的机会,让他的名字在历史上取得不逊于海森堡、波恩等人的地位。
    这条书摘已被收藏0
  • dzter
    2015-12-08 19:50:18 摘录自128-129页
    p×q≠q×p。如果说狄拉克比别人天才在什么地方,那就是他可以一眼就看出这才是海森堡体系的精髓。那个时候,波恩和约尔当还在苦苦地钻研讨厌的矩阵,为了建立起新的物理大厦而努力地搬运着这种庞大而又沉重的表格式方砖,而他们的文章尚未发表。但狄拉克是不想做这种苦力的,他轻易地透过海森堡的表格,把握住了这种代数的实质。不遵守交换率,这让我想起了什么?狄拉克的脑海里闪过一个名词,他以前在上某一门动力学课的时候,似乎听说过一种运算,同样不符合乘法交换率。但他还不是十分确定,他甚至连那种运算的定义都给忘了。那天是星期天,所有的图书馆都关门了,这让狄拉克急得像热锅上的蚂蚁。第二天一早,图书馆刚刚开门,他就冲了进去,果然,那正是他所要的东西:它的名字叫做“泊松括号”。
    这条书摘已被收藏0
  • dzter
    2015-12-08 19:50:18 摘录自126-127页
    有一个关于狄拉克的八卦是这样说的:1929年,海森堡和狄拉克从美国去日本讲课。在船上海森堡不停地和女孩跳舞,而狄拉克则一直坐在旁边看。过了很长时间,狄拉克终于忍不住问海森堡:“你干吗要跳舞呢?”海森堡说女孩子都不错,干吗不跳呢?狄拉克想了半天,小心翼翼地问:“可是,海森堡,你在跳舞之前怎么就能预先知道她们都不错呢?”另一个流传很广的笑话:有一次狄拉克在某大学演讲,讲完后一个观众站起来说:“狄拉克教授,我不明白你那个公式是如何推导出来的。”狄拉克看着他久久地不说话,主持人不得不提醒他,他还没有回答问题。“回答什么问题?”狄拉克奇怪地说,“他刚刚说的是一个陈述句,不是一个疑问句。”
    这条书摘已被收藏0
  • dzter
    2015-12-08 19:50:18 摘录自123页
    乔治•盖莫夫写过一本极受欢迎的老科普书《从一到无穷大》,这本书如此风靡全球,以致最近还出了一个新的中文版。盖莫夫在书里说,目前数学只有一个大分支还没有派上用场(除了做做智力体操之外),那就是数论。不过盖莫夫说这话时却没有想到,随着计算机革命的到来,古老的数论已经以惊人的速度在现代社会中找到了它的位置,开始大显身手。基于大素数原理的加密、解密和数字签名算法(如著名的公钥算法RSA)已经成为电子安全不可缺少的部分。我们每天上网和进行电子交易的时候,全靠它们的保护才使得黑客无法顺利地窃听你的隐私信息。……到今天为止,数论领域里已经有许多著名的难题被解开,比如四色问题、费马大定理。也有比如哥德巴赫猜想,至今悬而未决。天知道,这些理论和思路是不是也会在将来给某个物理或者化学理论开道,打造出一片全新的天地来。
    想起哈代作为数论专家也曾经低估了数论的实际用途,打脸太快了……
    这条书摘已被收藏0
  • dzter
    2015-12-08 19:50:18 摘录自122-123页
    我们已经看到,海森堡发明了这种奇特的表格,连他自己都没把握确定这是个什么怪物。当他结束养病,回到哥廷根后,就把论文草稿送给老师波恩,让他评论评论。波恩看到这种表格运算大吃一惊,原来这不是什么新鲜东西,正是线性代数里学到的“矩阵”!回溯历史,这种工具早在1858年就已经由一位剑桥的数学家Arthur Cayley所发明,不过当时不叫“矩阵”而叫做“行列式”(determinant,这个字后来变成了另夕卜一个意思,虽然还是和矩阵关系很紧密)。发明矩阵最初的目的,是简洁地来求解某些微分方程组(事实上直到今天,大学线性代数课还是主要解决这个问题)。但海森堡对此毫不知情,他实际上不知不觉地“重新发明”了矩阵的概念。
    这条书摘已被收藏0
  • dzter
    2015-12-08 19:50:18 摘录自122页
    海森堡后来在写给荷兰学者范德沃登(VanderWaerden)的信中回忆道,当他在那个石头小岛上的时候,有一晚忽然想到体系的总能量应该是一个常数。于是他试着用他那规则来解这个方程以求得振子能量。求解并不容易,他做了一个通宵,但求出来的结果和实验符合得非常好。于是他爬上一个山崖去看日出,同时感到自己非常幸运。是的,曙光已经出现,太阳正从海平线上冉冉升起,万道霞光染红了海面和空中的云彩,在天地间流动着奇幻的辉光。在高高的石崖顶上,海森堡面对着壮观的日出景象,他脚下碧海潮生,一直延伸到无穷无尽的远方。是的,他知道,this is the moment,他已经做出生命中最重要的突破,而物理学的黎明也终于到来。
    量子物理史上最著名的“日出”。
    这条书摘已被收藏0
  • dzter
    2015-12-08 19:50:18 摘录自121-122页
    1925年夏天,海森堡被一场热病所感染,不得不离开哥廷根,到北海的一个小岛赫尔格兰(Helgoland)去休养。但是他的大脑没有停滞,在远离喧嚣的小岛上,海森堡坚定地沿着这条奇特的表格式道路去探索物理学的未来。而且,他很快就获得了成功:事实上,只要把矩阵的规则运用到经典的动力学公式里去,把玻尔和索末菲旧的量子条件改造成新的由坚实的矩阵砖块构造起来的方程,海森堡可以自然而然地推导出量子化的原子能级和辐射频率。而且这一切都可以顺理成章从方程本身解出,不再需要像玻尔的旧模型那样,强行附加一个不自然的量子条件。海森堡的表格的确管用!数学解释一切,我们的想象是靠不住的。
    这条书摘已被收藏0
  • dzter
    2015-12-08 19:50:18 摘录自117页
    1925年,当海森堡做出他那突破性的贡献的时候,他刚刚24岁。尽管在物理上有着极为惊人的天才,但海森堡在别的方面无疑还只是一个稚气未脱的大孩子。他兴致勃勃地跟着青年团去各地旅行,在哥本哈根逗留期间,他抽空去巴伐利亚滑雪,结果摔伤了膝盖,躺了好几个礼拜。在山谷田野间畅游的时候,他高兴得不能自已,甚至说“我连一秒钟的物理都不愿想了”。这种政治和为人处世上的天真在后来的岁月里也一再地显露出来。量子论的发展几乎就是年轻人的天下。爱因斯坦1905年提出光量子假说的时候,也才26岁。玻尔1913年提出他的原子结构的时候,28岁。德布罗意1923年提出相波的时候,31岁(还应该考虑到他并非科班出身)。而1925年,当量子力学在海森堡的手里得到突破的时候,后来在历史上闪闪发光的那些主要人物也几乎都和海森堡一样年轻:泡利25岁,狄拉克23岁,乌仑贝克25岁,古兹密特23岁,约尔当23岁。和他们比起来,36岁的薛定谔和43岁的波恩简直算是老爷爷了。量子力学被人们戏称为“男孩物理学”,波恩在哥廷根的理论班,也被人叫做“波恩幼儿园”。不过,这只说明量子论的锐气和朝气。在那个神话般的年代,象征了科学永远不知畏惧的前进步伐,开创出一个前所未有的大时代来。
    这条书摘已被收藏0
  • dzter
    2015-12-08 19:50:18 摘录自116页
    海森堡的表格和玻尔的不同,它没有做任何假设和推论,不包含任何不可观察的数据。但作为代价,它采纳了一种二维的庞大结构,每个数据都要用横坐标和竖坐标两个变量来表示。正如我们不能用而必须用来表示电子频率一样。更关键的是,海森堡争辩说,所有的物理规则,也要按照这种表格的方式来改写。我们已经有了经典的动力学方程,现在,我们必须全部把它们按照量子的方式改写成某种表格方程。许多传统的物理变量,现在都要看成是一些独立的矩阵来处理。在玻尔和索末菲的旧原子模型里,用傅里叶级数展开的电子运动方程,也必须用矩阵重新加工,把不可观察的泥沙剔除出去,注入混凝土的坚实基础,也就是可检验的实际物理量。
    这条书摘已被收藏0
  • dzter
    2015-12-08 19:50:18 摘录自112页
    玻尔模型的建立有着氢原子光谱的支持。每一条光谱线都有一种特定的频率,而由量子公式,我们知道这是电子在两个能级之间跃迁的结果。但是,海森堡争辩道,你还是没有解决我的疑问,没有实际的观测可以证明某一个轨道所代表的“能级”是什么。每一条频率为V的光谱线,只代表两个“能级”之间的“能量差”。我们直接观察到的,既不是£厂也不是£2,而是!换句话说,只有“能级差”或者“轨道差”是可以被直接观察到的,而“能级”和“轨道”却不是。
    这条书摘已被收藏0
  • dzter
    2015-12-08 19:50:18 摘录自112页
    我们再来回顾一下玻尔理论说了些什么。它说,原子中的电子绕着某些特定的轨道以一定的频率运行,并时不时地从一个轨道跃迁到另一个轨道上去。每个电子轨道都代表一个特定的能级,因此当这种跃迁发生的时候,电子就按照量子化的方式吸收或者发射能量,其大小等于两个轨道之间的能量差。……海森堡开始问自己。一个电子的“轨道”,它究竟是什么东西?有任何实验能够让我们看到电子的确绕着某个轨道运转吗?有任何实验可以确实地测出一个轨道的能量,或者它离开原子核的实际距离吗?诚然,轨道的图景生动而鲜明,为人们所熟悉,可以类比于行星的运行轨道,但是和行星不同,有没有任何法子让人们真正地看到电子的这么一个“轨道”,并实际测量一个轨道所代表的“能量”呢?没有法子,电子的轨道,还有它绕着轨道的运转频率,都不是能够实际观察到的,那么人们怎么得出这些概念并在此之上建立起原子模型的呢?
    这条书摘已被收藏0
  • dzter
    2015-12-08 19:50:18 摘录自110页
    虽然BKS倒台了,但这在色散理论中已被证明是有成效的方法。海森堡相信,这个思路应该可以解决玻尔体系所解决不了的一些问题,譬如谱线的强度。但是当他兴致勃勃地展开计算后,他的乐观态度很快就无影无踪了:事实上,如果把电子辐射按照虚振子的代数方法展开,他所遇到的数学困难几乎是不可克服的,这使得海森堡不得不放弃了原先的计划。泡利在同样的问题上也被难住了,障碍实在太大,几乎无法前进,这位脾气急躁的物理学家是如此暴跳如雷,几乎准备放弃物理学。“物理学出了大问题,”他叫嚷道,“对我来说什么都太难了,我宁愿自己是一个电影喜剧演员,从来也没听说过物理是什么东西!”(插一句,泡利说宁愿自己是喜剧演员,这是因为他是卓别林的fans之一。)无奈之下,海森堡决定换一种办法,暂时不考虑谱线强度,而从电子在原子中的运动出发,先建立起基本的运动模型来。事实证明他这条路走对了,新的量子力学很快就要被建立起来,但那却是一种人们闻所未闻,之前连想都不敢想象的形式——Matrix。
    这条书摘已被收藏0
  • dzter
    2015-12-08 19:50:18 摘录自110页
    那时候,有一种思潮在哥本哈根流行开来。这个思想当时不知是谁引发的,但历史上大约可以回溯到马赫。这种思潮说,物理学的研究对象只应该是能够被观察到被实践到的事物,物理学只能够从这些东西出发,而不是建立在观察不到或者纯粹是推论的事物上。这个观点对海森堡以及不久后也来哥本哈根访问的泡利都有很大影响,海森堡开始隐隐感觉到,玻尔旧原子模型里的有些东西似乎不太对头,似乎它们不都是直接能够为实验所探测的。最明显的例子就是电子的“轨道”以及它绕着轨道运转的“频率”。
    这条书摘已被收藏0
  • dzter
    2015-12-08 19:50:18 摘录自108-109页
    在海森堡来到哥本哈根前不久,玻尔和他的助手克喇默斯还有斯雷特发表了一个称作BKS的理论以试图解决波和粒子的两难。在BKS理论看来,在每一个稳定的原子附近,都存在着某些“虚拟的振动"(virtual oscillator),这些神秘的虚拟振动通过对应原理一一与经典振动相对应,从而使得量子化之后仍然保留有经典波动理论的全部优点(实际上,它是想把粒子在不同的层次上进一步考虑成波)。然而这个看似皆大欢喜的理论实在有着难言的苦衷,它为了调解波动和微粒之间的宿怨,甚至不惜抛弃物理学的基石之一:能量守恒和动量守恒定律,认为它们只不过是一种统计下的平均情况。这个代价太大,遭到爱因斯坦强烈反对,在他影响下泡利也很快转换态度,他不止一次写信给海森堡抱怨“虚拟的振动”还有“虚拟的物理学”。…… BKS的崩溃标志着物理学陷人彻底的混乱,粒子和波的问题是如此令人迷惑而头痛,以致玻尔都说这实在是一种“折磨”(torture)。对于曾经信奉BKS的海森堡来说,这当然是一个坏消息,但是就像一盆冷水,也能让他清醒一下,认真地考虑未来的出路何在。
    这条书摘已被收藏0