App 下载
注册
登录
|
搜索
正在搜索中...
首页
我的书架
我的主页
我的收藏
我的书评
哥德尔、艾舍尔、巴赫
集异璧-GEB,是数学家哥德尔、版画家艾舍尔、音乐家巴赫三个名字的前缀。《哥德尔、艾舍尔、巴赫书:集异璧之大成》是在英语世界中有极高评价的科普著作,曾获得普利策文学奖。它
……
[ 展开全部 ]
通过对哥德尔的数理逻辑,艾舍尔的版画和巴赫的音乐三者的综合阐述,引人入胜地介绍了数理逻辑学、可计算理论、人工智能学、语言学、遗传学、音乐、绘画的理论等方面,构思精巧、含义深刻、视野广阔、富于哲学韵味。 中译本前后费时十余年,译者都是数学和哲学的专家,还得到原作者的直接参与,译文严谨通达,特别是在原作者的帮助下,把西方的文化典故和说法,尽可能转换为中国文化的典故和说法,使这部译本甚至可看作是一部新的创作,也是中外翻译史上的一个创举。
[ 收起 ]
作者:[美] 侯世达
出版社:商务印书馆
定价:88.00元
ISBN:7100013232
给个评价
做个书摘
书摘 (21 )
评价 (1 )
第四章 一致性、完全性与几何学:和声小迷宫
thuScarlett
2018-02-15 10:30:34 摘录
堕界:没有打出来的嗝和已熄灭的灯光所在的地方。它是一种候室,在这儿处于休眠状态的软件等着宿主硬件回来。无法知道这个系统要瘫痪多久,我们会一直呆在堕界里,也许几分钟,也许几小时、几天—甚至几年。
很文学的一个概念。
这条书摘已被收藏
0
次
+1
0
分享
收藏
0
条评价
thuScarlett
2018-02-15 10:16:09 摘录
完全性
如果一致性是符号获得被动意义的最低条件,那么与之互补的概念,完全性,是那些被动意义的最高确认。一致性是说:“系统产生的每个东西都是真的”,完全性是倒过来:“每个真陈述都是由系统产生的”。现在稍稍修饰一下这个概念。我们不会是指世界上所有的真陈述—我们指的仅是这样的陈述:它们所属的领域是我们力图用该形式系统去表达的。所以,完全性的意思是:“每个能由系统中的概念表示出来的真陈述都是系统中的定理”。
一致性:每个定理经解释后都成为真的(在某个想象的世界里)。
完全性:所有真的(在某个想象的世界里)且可表示成系统中的良构符号串的陈述都是定理。
这条书摘已被收藏
0
次
+1
0
分享
收藏
0
条评价
thuScarlett
2018-02-14 16:06:37 摘录
哥德尔的证明方法中最绕人之处是他所使用的种种推理方法看上去无法被“封住”——它们拒不卷入任何形式系统。于是,初看起来,哥德尔似乎是发掘出了以前不被人知,但却意味深长的人类推理与机械推理之间的区别。这种生命系统的能力与无生命系统的能力间的差异,在真理概念与定理资格概念之间的差异上反映了出来….…或至少这是一种“浪漫”地看待这个问题的方式。
这条书摘已被收藏
0
次
+1
0
分享
收藏
0
条评价
导购链接
×
做书摘
文字书摘
读图识字
至少还需要输入
10
字
保存原图片为书摘
上传图片
识别
最多输入
500
个字
上传图片
重新上传
写点笔记吧
至少还需要输入
10
字
章节(选填)
目录: 作者为中文版所写的前言
译校者的话
概览
插图目示
鸣谢
上篇:集异璧geb
导言 一首音乐--逻辑的奉献:三部创意曲
第一章 wu谜题:二部创意曲
第二章 数学中的意义与形式:无伴奏阿基里斯奏鸣曲
第三章 图形与衬底:对位藏头诗
第四章 一致性、完全性与几何学:和声小迷宫
第五章 递归结构和递归过程:音程增值的卡农
第六章 意义位于何处:半音阶幻想曲,及互格
第七章 命题演算:螃蟹卡农
第八章 印符数论:一首无的奉献
第九章 无门与歌德尔
下篇:异集璧egb
前奏曲
第十章 描述的层次和计算机系统:蚂蚁赋格
第十一章 大脑和思维:英、法、德、中组曲
第十二章 心智和思维:咏叹调及其种种变奏
第十三章 bloop和floop和gloop:g弦上的咏叹调
第十四章 论tnt及有关系统中形式上不可判定的命题:生日大合唱哇哇哇乌阿乌阿乌阿
第十五章 跳出系统:一位烟民富于启发性的思想
第十六章 自指和自复制:的确该赞美螃蟹
第十七章 丘奇、图灵、塔斯基及别的人:施德鲁,人设计的玩具
第十八章 人工智能:回顾:对实
第十九章 人工智能:展望:树懒卡农
第二十章 怪圈,或缠结的层次结构:六部无插入赋格
注释
文献目录
索引
页码(选填)
这本书已经添加了这些章节,请勾选或者新建你的书摘所属的章节
add
up
down
remove
目录: 作者为中文版所写的前言
译校者的话
概览
插图目示
鸣谢
上篇:集异璧geb
导言 一首音乐--逻辑的奉献:三部创意曲
第一章 wu谜题:二部创意曲
第二章 数学中的意义与形式:无伴奏阿基里斯奏鸣曲
第三章 图形与衬底:对位藏头诗
第四章 一致性、完全性与几何学:和声小迷宫
第五章 递归结构和递归过程:音程增值的卡农
第六章 意义位于何处:半音阶幻想曲,及互格
第七章 命题演算:螃蟹卡农
第八章 印符数论:一首无的奉献
第九章 无门与歌德尔
下篇:异集璧egb
前奏曲
第十章 描述的层次和计算机系统:蚂蚁赋格
第十一章 大脑和思维:英、法、德、中组曲
第十二章 心智和思维:咏叹调及其种种变奏
第十三章 bloop和floop和gloop:g弦上的咏叹调
第十四章 论tnt及有关系统中形式上不可判定的命题:生日大合唱哇哇哇乌阿乌阿乌阿
第十五章 跳出系统:一位烟民富于启发性的思想
第十六章 自指和自复制:的确该赞美螃蟹
第十七章 丘奇、图灵、塔斯基及别的人:施德鲁,人设计的玩具
第十八章 人工智能:回顾:对实
第十九章 人工智能:展望:树懒卡农
第二十章 怪圈,或缠结的层次结构:六部无插入赋格
注释
文献目录
索引
×
添加一个书摘本
搜索创建书摘本
搜索
正在搜索...
不对,换一下
书名
作者
出版社
备注
ISBN
*
*
×
编辑书摘
书摘
最少还需要输入
10
字
写点笔记吧
最少还需要输入
10
字
*
这条书摘是属于哪一章节的?
目录: 作者为中文版所写的前言
译校者的话
概览
插图目示
鸣谢
上篇:集异璧geb
导言 一首音乐--逻辑的奉献:三部创意曲
第一章 wu谜题:二部创意曲
第二章 数学中的意义与形式:无伴奏阿基里斯奏鸣曲
第三章 图形与衬底:对位藏头诗
第四章 一致性、完全性与几何学:和声小迷宫
第五章 递归结构和递归过程:音程增值的卡农
第六章 意义位于何处:半音阶幻想曲,及互格
第七章 命题演算:螃蟹卡农
第八章 印符数论:一首无的奉献
第九章 无门与歌德尔
下篇:异集璧egb
前奏曲
第十章 描述的层次和计算机系统:蚂蚁赋格
第十一章 大脑和思维:英、法、德、中组曲
第十二章 心智和思维:咏叹调及其种种变奏
第十三章 bloop和floop和gloop:g弦上的咏叹调
第十四章 论tnt及有关系统中形式上不可判定的命题:生日大合唱哇哇哇乌阿乌阿乌阿
第十五章 跳出系统:一位烟民富于启发性的思想
第十六章 自指和自复制:的确该赞美螃蟹
第十七章 丘奇、图灵、塔斯基及别的人:施德鲁,人设计的玩具
第十八章 人工智能:回顾:对实
第十九章 人工智能:展望:树懒卡农
第二十章 怪圈,或缠结的层次结构:六部无插入赋格
注释
文献目录
索引
*
页码
×
删除
您确定要删除吗?
如果一致性是符号获得被动意义的最低条件,那么与之互补的概念,完全性,是那些被动意义的最高确认。一致性是说:“系统产生的每个东西都是真的”,完全性是倒过来:“每个真陈述都是由系统产生的”。现在稍稍修饰一下这个概念。我们不会是指世界上所有的真陈述—我们指的仅是这样的陈述:它们所属的领域是我们力图用该形式系统去表达的。所以,完全性的意思是:“每个能由系统中的概念表示出来的真陈述都是系统中的定理”。
一致性:每个定理经解释后都成为真的(在某个想象的世界里)。
完全性:所有真的(在某个想象的世界里)且可表示成系统中的良构符号串的陈述都是定理。