App 下载
注册
登录
|
搜索
正在搜索中...
首页
我的书架
我的主页
我的收藏
我的书评
《统计学习方法》是计算机及其应用领域的一门重要的学科。《统计学习方法》全面系统地介绍了统计学习的主要方法,特别是监督学习方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、
……
[ 展开全部 ]
逻辑斯谛回归与最大熵模型、支持向量机、提升方法、EM算法、隐马尔可夫模型和条件随机场等。除第1章概论和最后一章总结外,每章介绍一种方法。叙述从具体问题或实例入手,由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实质,学会运用。为满足读者进一步学习的需要,书中还介绍了一些相关研究,给出了少量习题,列出了主要参考文献。
[ 收起 ]
作者:李航
出版社:清华大学出版社
定价:38.00元
ISBN:9787302275954
给个评价
做个书摘
书摘 (21 )
评价 (1 )
查看所有书摘
按目录显示书摘
一得阁
2015-12-24 13:41:23 摘录
买了书,准备开始看,做个标记先
这条书摘已被收藏
0
次
+1
0
分享
收藏
0
条评价
点击加载更多
导购链接
×
做书摘
文字书摘
读图识字
至少还需要输入
10
字
保存原图片为书摘
上传图片
识别
最多输入
500
个字
上传图片
重新上传
写点笔记吧
至少还需要输入
10
字
章节(选填)
第1章统计学习方法概论
1.1统计学习
1.2监督学习
1.3统计学习三要素
1.4模型评估与模型选择
1.5i~则化与交叉验证
1.6泛化能力
1.7生成模型与判别模型
1.8分类问题
1.9标注问题
1.10回归问题
本章概要
继续阅读
习题
参考文献
第2章感知机
2.1感知机模型
2.2感知机学习策略
2.3感知机学习算法
第3章众近邻法
3.1k近邻算法
3.2k近邻模型
3.3k近邻法的实现:kd树
第4章朴素贝叶斯法
4.1朴素贝叶斯法的学习与分类
4.2朴素贝叶斯法的参数估计
第5章决策树
第6章逻辑斯谛回归与最大熵模型
第7章支持向量机
第8章提升方法
第9章em算法及其推广
第10章隐马尔可夫模型
第11章条件随机场
第12章统计学习方法总结
附录a梯度下降法
附录b牛顿法和拟牛顿法
附录c拉格朗日对偶性
索引
页码(选填)
这本书已经添加了这些章节,请勾选或者新建你的书摘所属的章节
add
up
down
remove
第1章统计学习方法概论
1.1统计学习
1.2监督学习
1.3统计学习三要素
1.4模型评估与模型选择
1.5i~则化与交叉验证
1.6泛化能力
1.7生成模型与判别模型
1.8分类问题
1.9标注问题
1.10回归问题
本章概要
继续阅读
习题
参考文献
第2章感知机
2.1感知机模型
2.2感知机学习策略
2.3感知机学习算法
第3章众近邻法
3.1k近邻算法
3.2k近邻模型
3.3k近邻法的实现:kd树
第4章朴素贝叶斯法
4.1朴素贝叶斯法的学习与分类
4.2朴素贝叶斯法的参数估计
第5章决策树
第6章逻辑斯谛回归与最大熵模型
第7章支持向量机
第8章提升方法
第9章em算法及其推广
第10章隐马尔可夫模型
第11章条件随机场
第12章统计学习方法总结
附录a梯度下降法
附录b牛顿法和拟牛顿法
附录c拉格朗日对偶性
索引
×
添加一个书摘本
搜索创建书摘本
搜索
正在搜索...
不对,换一下
书名
作者
出版社
备注
ISBN
*
*
×
编辑书摘
书摘
最少还需要输入
10
字
写点笔记吧
最少还需要输入
10
字
*
这条书摘是属于哪一章节的?
第1章统计学习方法概论
1.1统计学习
1.2监督学习
1.3统计学习三要素
1.4模型评估与模型选择
1.5i~则化与交叉验证
1.6泛化能力
1.7生成模型与判别模型
1.8分类问题
1.9标注问题
1.10回归问题
本章概要
继续阅读
习题
参考文献
第2章感知机
2.1感知机模型
2.2感知机学习策略
2.3感知机学习算法
第3章众近邻法
3.1k近邻算法
3.2k近邻模型
3.3k近邻法的实现:kd树
第4章朴素贝叶斯法
4.1朴素贝叶斯法的学习与分类
4.2朴素贝叶斯法的参数估计
第5章决策树
第6章逻辑斯谛回归与最大熵模型
第7章支持向量机
第8章提升方法
第9章em算法及其推广
第10章隐马尔可夫模型
第11章条件随机场
第12章统计学习方法总结
附录a梯度下降法
附录b牛顿法和拟牛顿法
附录c拉格朗日对偶性
索引
*
页码
×
删除
您确定要删除吗?