App 下载
注册
登录
|
搜索
正在搜索中...
首页
我的书架
我的主页
我的收藏
我的书评
这本书为机器学习技术提供了一些非常棒的案例研究。它并不想成为一本关于机器学习的工具书或者理论书籍,它注重的是一个学习的过程,因而对于任何有一些编程背景和定量思维的人来说,
……
[ 展开全部 ]
它都是不错的选择。 ——Max Shron OkCupid 机器学习是计算机科学和人工智能中非常重要的一个研究领域,近年来,机器学习不但在计算机科学的众多领域中大显身手,而且成为一些交叉学科的重要支撑技术。本书比较全面系统地介绍了机器学习的方法和技术,不仅详细阐述了许多经典的学习方法,还讨论了一些有生命力的新理论、新方法。 全书案例既有分类问题,也有回归问题;既包含监督学习,也涵盖无监督学习。本书讨论的案例从分类讲到回归,然后讨论了聚类、降维、最优化问题等。这些案例包括分类:垃圾邮件识别,排序:智能收件箱,回归模型:预测网页访问量,正则化:文本回归,最优化:密码破解,无监督学习:构建股票市场指数,空间相似度:用投票记录对美国参议员聚类,推荐系统:给用户推荐R语言包,社交网络分析:在Twitter上感兴趣的人,模型比较:给你的问题找到最佳算法。各章对原理的叙述力求概念清晰、表达准确,突出理论联系实际,富有启发性,易于理解。在探索这些案例的过程中用到的基本工具就是R统计编程语言。R语言非常适合用于机器学习的案例研究,因为它是一种用于数据分析的高水平、功能性脚本语言。 本书主要内容: ·开发一个朴素贝叶斯分类器,仅仅根据邮件的文本信息来判断这封邮件是否是垃圾邮件; ·使用线性回归来预测互联网排名前1000网站的PV; ·利用文本回归理解图书中词与词之间的关系; ·通过尝试破译一个简单的密码来学习优化技术; ·利用无监督学习构建股票市场指数,用于衡量整体市场行情的好坏; ·根据美国参议院的投票情况,从统计学的角度对美国参议员聚类; ·通过K近邻算法构建向用户推荐R语言包; ·利用Twitter数据来构建一个“你可能感兴趣的人”的推荐系统; ·模型比较:给你的问题找到最佳算法。
[ 收起 ]
作者:(美)Drew Conway John Myles White
出版社:机械工业出版社
定价:69.00元
ISBN:9787111417316
给个评价
做个书摘
书摘 (21 )
评价 (1 )
查看所有书摘
按目录显示书摘
有品位!
还没有认为这本书添加过书摘,赶紧来做第一个吧!
发布一条书摘有50分入账哦。
做第一条书摘
点击加载更多
导购链接
×
做书摘
文字书摘
读图识字
至少还需要输入
10
字
保存原图片为书摘
上传图片
识别
最多输入
500
个字
上传图片
重新上传
写点笔记吧
至少还需要输入
10
字
章节(选填)
前言 1
第1章 使用R语言 9
R与机器学习 10
第2章 数据分析 36
分析与验证 36
什么是数据 37
推断数据的类型 40
推断数据的含义 42
数值摘要表 43
均值、中位数、众数 44
分位数 46
标准差和方差 47
可视化分析数据 49
列相关的可视化 68
第3章 分类:垃圾过滤 77
非此即彼:二分类 77
漫谈条件概率 81
试写第一个贝叶斯垃圾分类器 82
第4章 排序:智能收件箱 97
次序未知时该如何排序 97
按优先级给邮件排序 98
实现一个智能收件箱 102
第5章 回归模型:预测网页访问量 128
回归模型简介 128
预测网页流量 142
定义相关性 152
第6章 正则化:文本回归 155
数据列之间的非线性关系:超越直线 155
避免过拟合的方法 164
文本回归 174
第7章 优化:密码破译 182
优化简介 182
岭回归 188
密码破译优化问题 193
第8章 PCA:构建股票市场指数 203
无监督学习 203
主成分分析 204
第9章 MDS:可视化地研究参议员相似性 212
基于相似性聚类 212
如何对美国参议员做聚类 219
第10章 kNN:推荐系统 229
k近邻算法 229
R语言程序包安装数据 235
第11章 分析社交图谱 239
社交网络分析 239
用黑客的方法研究Twitter的社交关系图数据 244
分析Twitter社交网络 252
第12章 模型比较 270
SVM:支持向量机 270
算法比较 280
参考文献 287
页码(选填)
这本书已经添加了这些章节,请勾选或者新建你的书摘所属的章节
add
up
down
remove
前言 1
第1章 使用R语言 9
R与机器学习 10
第2章 数据分析 36
分析与验证 36
什么是数据 37
推断数据的类型 40
推断数据的含义 42
数值摘要表 43
均值、中位数、众数 44
分位数 46
标准差和方差 47
可视化分析数据 49
列相关的可视化 68
第3章 分类:垃圾过滤 77
非此即彼:二分类 77
漫谈条件概率 81
试写第一个贝叶斯垃圾分类器 82
第4章 排序:智能收件箱 97
次序未知时该如何排序 97
按优先级给邮件排序 98
实现一个智能收件箱 102
第5章 回归模型:预测网页访问量 128
回归模型简介 128
预测网页流量 142
定义相关性 152
第6章 正则化:文本回归 155
数据列之间的非线性关系:超越直线 155
避免过拟合的方法 164
文本回归 174
第7章 优化:密码破译 182
优化简介 182
岭回归 188
密码破译优化问题 193
第8章 PCA:构建股票市场指数 203
无监督学习 203
主成分分析 204
第9章 MDS:可视化地研究参议员相似性 212
基于相似性聚类 212
如何对美国参议员做聚类 219
第10章 kNN:推荐系统 229
k近邻算法 229
R语言程序包安装数据 235
第11章 分析社交图谱 239
社交网络分析 239
用黑客的方法研究Twitter的社交关系图数据 244
分析Twitter社交网络 252
第12章 模型比较 270
SVM:支持向量机 270
算法比较 280
参考文献 287
×
添加一个书摘本
搜索创建书摘本
搜索
正在搜索...
不对,换一下
书名
作者
出版社
备注
ISBN
*
*
×
编辑书摘
书摘
最少还需要输入
10
字
写点笔记吧
最少还需要输入
10
字
*
这条书摘是属于哪一章节的?
前言 1
第1章 使用R语言 9
R与机器学习 10
第2章 数据分析 36
分析与验证 36
什么是数据 37
推断数据的类型 40
推断数据的含义 42
数值摘要表 43
均值、中位数、众数 44
分位数 46
标准差和方差 47
可视化分析数据 49
列相关的可视化 68
第3章 分类:垃圾过滤 77
非此即彼:二分类 77
漫谈条件概率 81
试写第一个贝叶斯垃圾分类器 82
第4章 排序:智能收件箱 97
次序未知时该如何排序 97
按优先级给邮件排序 98
实现一个智能收件箱 102
第5章 回归模型:预测网页访问量 128
回归模型简介 128
预测网页流量 142
定义相关性 152
第6章 正则化:文本回归 155
数据列之间的非线性关系:超越直线 155
避免过拟合的方法 164
文本回归 174
第7章 优化:密码破译 182
优化简介 182
岭回归 188
密码破译优化问题 193
第8章 PCA:构建股票市场指数 203
无监督学习 203
主成分分析 204
第9章 MDS:可视化地研究参议员相似性 212
基于相似性聚类 212
如何对美国参议员做聚类 219
第10章 kNN:推荐系统 229
k近邻算法 229
R语言程序包安装数据 235
第11章 分析社交图谱 239
社交网络分析 239
用黑客的方法研究Twitter的社交关系图数据 244
分析Twitter社交网络 252
第12章 模型比较 270
SVM:支持向量机 270
算法比较 280
参考文献 287
*
页码
×
删除
您确定要删除吗?
有品位!
还没有认为这本书添加过书摘,赶紧来做第一个吧!
发布一条书摘有50分入账哦。